Combining multiple 2nu-SVM classifiers for tissue segmentation
نویسندگان
چکیده
In image classification problems, especially those involving tumor or precancerous lesion, we are usually faced with the situation in which the cost of mistakenly classifying samples in one class is much higher than that of the opposite mistake in the other class. Therefore it is essential to include cost information about classes in our classification methods. This paper applies a cost-sensitive 2ν-SVM classification scheme to cervical cancer images to separate diseased regions from healthy tissue. Using this method, we are able to specify a higher weight to the class that is deemed more important. To the best of our knowledge, cost-sensitive SVM based medical image classification has not been done before. We specifically target segmenting disease regions in digitized uterine cervix images in a NCI/NLM archive of 60,000 images. Our second contribution is the introduction of a multiple classifier scheme instead of the traditional single classifier model. Using the multiple classifier scheme improves significantly classification accuracy as demonstrated by our experiments.
منابع مشابه
Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)
Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...
متن کاملCombining Multiple and Classifiers for Increasing Accuracy for
In this paper we combining statistical, structural Global transformation and moments features to form hybrid feature vector .We are combining Classifiers for achieving high accuracy for Devanagari Script. To abolish the hitch of misclassification and increase the classifier accurac combining SVM and KNN together. The dataset used for experiment are created by us.
متن کاملMultimodal Correlative Preclinical Whole Body Imaging and Segmentation
Segmentation of anatomical structures and particularly abdominal organs is a fundamental problem for quantitative image analysis in preclinical research. This paper presents a novel approach for whole body segmentation of small animals in a multimodal setting of MR, CT and optical imaging. The algorithm integrates multiple imaging sequences into a machine learning framework, which generates sup...
متن کاملOnline multiple people tracking-by-detection in crowded scenes
Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...
متن کاملObject-Based Image Classification of Summer Crops with Machine Learning Methods
The strategic management of agricultural lands involves crop field monitoring each year. Crop discrimination via remote sensing is a complex task, especially if different crops have a similar spectral response and cropping pattern. In such cases, crop identification could be improved by combining object-based image analysis and advanced machine learning methods. In this investigation, we evalua...
متن کامل